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ABSTRACT
The paper serves as an experimental report submitted to the KDF.SIGIR
2023 shared task on relation extraction, focusing on the REFinD
dataset. Motivated by recent advancements on Pre-trained Lan-
guage Models (PLMs), we propose a simple, yet effective approach
that leverages popular PLMs such as BERT, and RoBERTa to address
this challenge. The approach capitalizes on the inherent capabilities
of PLMs to encode sequences and enrich the semantics of the repre-
sentations at the entity level. We go beyond the lexical and semantic
levels by incorporating supplementary information to tackle the
challenges in this task of financial relation classification. In the
paper, we detail and justify the approach and report the results of
our ablation studies.

CCS CONCEPTS
• Information systems→ Information retrieval; • Computing
methodologies→ Information extraction.

KEYWORDS
financial relation extraction, relation classification, shortest depen-
dency path (SDP)
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1 INTRODUCTION
Relation extraction (RE) targets one of the fundamental challenges
in natural language processing (NLP), which is to comprehend the
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intricate connections between entities. Given a sequence s, RE ex-
tracts relationship triplets like <e1, r, e2> that describe a predefined
relationship r between two entities e1 and e2. For example, for s
= Jobs created Apple, an RE system outputs a triplet <Apple, cre-
ated_by, Jobs>. By automatically detecting and classifying meaning-
ful relationships between entities, RE has the potential to retrieve
structured information from unstructured textual data, bridging the
gap between natural language and machine-understandable lan-
guage. RE thus has the potential for multiple downstream applica-
tions, such as information retrieval, question-answering, sentiment
analysis, and knowledge base construction.

In light of the shared task, our work falls into the category of
relation classification (RC). In this case, entities e1 and e2 in a rela-
tion triplet <e1, r, e2> are known, which allows us to skip the steps
of named entity recognition (NER) and entity linking. The task of
RC to predict the relation r [12] is a subtask of relation extraction
or an intermediate step in a pipeline approach to RE.

Motivated by recent work in pre-trained large language mod-
els (PLMs), we have sought to devise a simple approach to this
challenge with PLMs. In light of this objective, we finally present
a RoBERTa-based architecture that incorporates enriched entity-
level information, dependency information, and external features to
address financial relation classification. While acknowledging that
our proposed approach may not represent state-of-the-art (SOTA)
methods, we emphasize its simplicity and effectiveness. Our inten-
tion is to strike a balance between complexity and performance,
delivering a solution that is both comprehensible and capable of
achieving commendable results in financial relation classification
tasks.

The rest of the paper is organized as follows: Section 3 clarifies
the proposed approach theoretically. Section 4 presents the data set
of the shared task, the evaluation results of the proposed method,
and the ablation study, which provides justification for our method.
Finally, the Conclusion section summarizes our work and outlines
potential directions for future research.

2 RELATEDWORK
Various approaches have been developed to address the challenges
of relation classification, ranging from traditional rule-based meth-
ods and statistical models to recent deep learning approaches.
In deep learning, relation classification can be structure-oriented
or semantic-oriented [4, 9]. Structure-oriented methods focus on
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model architectures. For instance, Zeng et al. [12] employed con-
volutional deep neural networks (CNNs) to automatically extract
features at lexical and sentence levels without the complicated pre-
processing used in statistical approaches; Zhang and Wang [13]
proposed a recurrent or recursive neural networks (RNN) for rela-
tion classification, especially between long distance entities; Zhang
et al. [16] introduced dependency trees and built a graph convolu-
tional neural network (GCN) for RE.

Some researchers have integrated multiple approaches to fully
exploit the respective advantages: for example, RNN (LSTM, GRU,
etc.) can learn temporal and context features, while CNN effectively
captures local patterns. Other studies have achieved superior per-
formance by combining RNN and CNN structures in their relation
classification experiments [3, 14, 15]. Semantic-oriented approaches
explore the capability of text embeddings for relation extraction
tasks. The dominant paradigm based on PLMs especially encour-
ages this kind of approach. For example, Baldini Soares et al. [1]
found that using text representations from PLMs is a simple and ef-
fective strategy for RE tasks. Wu and He [10] proposed the R-BERT
model, which leveraged BERT [2] to capture the semantics of the se-
quence and entity mentions, and it outperformed the previous work
approaches in the SemEval2010 task 8 dataset. Likewise, Zhang et al.
[17] incorporated knowledge graphs (KGs) into BERT to enrich the
representations of NLP tasks, including relation classification.

Inspired by the above-mentioned recent work in relation extrac-
tion with PLMs, we adopt a simple approach to this challenge. In
the end, we propose a RoBERTa-based architecture incorporating
internal and external features to address financial RC tasks.

3 METHODOLOGY
Figure 1 illustrates the basic architecture of our proposed approach.
Similar to R-BERT [10], we used a PLM as the backbone, experi-
mented on multiple models, and finally decided on the RoBERTa,
and took the text representations at the sentence and entity levels
as the main features for classification, along with external features.
Notice that we refer to text representations that come from the
PLM directly as internal features and others as external features.

Given a sequence swith entities e1 and e2, we inserted a [CLS] tag
at the beginning of the sequence, and another two special tokens,
<e𝑖> and </e𝑖>, at both ends of the entities as location markers,
so that it facilitates the language model to capture the location
information of the entities, which is believed to be vital for RC
tasks [10]. We avoid special characters like # or $ used by Wu and
He [10], to prevent confusion about the location makers and the
in-text characters (e.g., $ conflicts with the dollar symbol, especially
critical in the financial texts). For example, s = Jobs created Apple
becomes s’ = [CLS] <e1> Jobs </e1> created <e2> Apple </e2>.

Taking s’ as the initial input, we then have the last hidden state
output from the PLM asH and the last hidden state of the first token,
i.e., [CLS], as H0. Usually, H0 represents the entire sequence during
classification tasks, but here we use an averaged H to indicate
the sentence representations, hoping that the averaged H, which
captures more semantics, especially for long sequences.

Based on Wu and He [10], we extracted vectors to represent
the target entities, not merely the sentence-level information. We
also considered the shortest dependency path (henceforth SDP)

between the words composing the entities, which is essential for
relationship identification in most cases [5]. For instance, given s
= Apple, the tech company, was founded by Jobs., the SDP between
entities Apple and Jobs is shown as the dashed-line arrows in Figure
2. The nodes founded and by along this path are SDP words. Instead
of averaging separately as in [10], we compressed the semantics
of the two entities and SDP words into one vector. This method
helps to model the interactions or intricate connections within the
fragment. Moreover, we added the entity pair group as an external
feature to alleviate the issue of relation distribution imbalance.

Figure 1: The architecture of our approach

Figure 2: A dependency tree example

4 EXPERIMENTS
4.1 Dataset
REFinD [6], released by the task organizers, is a large dataset for
financial relation extraction. The dataset is built on the 10-X re-
ports from trade companies and specifically tailored for finance-
related relation extraction tasks. With a large collection of 29,000
instances, the dataset encompasses 22 predefined relations across
eight types of entity pairs. Notably, the dataset offers comprehen-
sive annotations, including named entity recognition (NER) tags,
part-of-speech (POS) tags, dependency information, etc. The rich
annotations greatly simplify the preprocessing work, paving the
way for further explorations beyond the goals of this shared task.
However, a primary problemwith the dataset, as shown in Figures 3
and 4, is that it presents a noticeable imbalance in terms of relation
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Table 1: Experimental settings

Optimizer AdamW
Loss function Cross entropy

Max sequence length 384
Learning rate 2e-5
Training epoch 5 ± 2
Dropout rate 0.1

and sentence length distribution. Such imbalances pose significant
challenges for the relation classification (RC) task, requiring careful
consideration and specialized strategies to mitigate their impact.
Nonetheless, addressing these challenges can yield valuable insights
and advancements in the field of financial relation extraction.

Figure 3: Relation Distribution (from https://refind-re.github.
io/)

Figure 4: Sentence Length Distribution (from https://refind-
re.github.io/)

The REFinD dataset consists of a train set, a validation set, and
a public test set. The task organizers have also released a private
test set without labels.

4.2 Experimental Settings
Table 1 presents the settings for our experiments, including hyper-
parameters, loss functions, and optimizers. Note that the max se-
quence length has a remarkable impact on the performance (neither
128 nor 512 outperforms 384).

Table 2: Performance of the approach

Test set Macro-F1 Weighted-F1 Official Gap

Public 0.6141 0.7734 0.7482 -0.0034
Private - - 0.6894 -0.0602

Table 3: Performance of R-BERT with different PLMs

PLM Macro-F1

R-BERT 0.54
R-BERT with FinBERT 0.56
R-BERT with RoBERTa 0.58

4.3 Evaluation Results
For evaluation, we employed macro-F1 or weighted-F1 as the pri-
marymetrics. Besides, we also reported the official evaluation scores
(details of the metric have not been released yet). In Table 2, we
present the scores achieved on the two test sets, along with the
performance gap to the top systems on the leaderboard.1 It is worth
noting that while our approach may not be among the top places,
the margin by which it falls behind is relatively small, indicating
that the approach is effective.

4.4 Ablation Studies
To offer empirical evidence supporting the approach, we conducted
an ablation study to identify the crucial components relevant to
the financial RC tasks. This study enabled us to systematically
analyze the individual contributions of various components and
determine their significance in the overall performance of the ap-
proach. By dissecting and evaluating these components, we hoped
to enhance the transparency and interpretability of the approach
while strengthening its empirical foundation.

To determine the optimal PLM for text representations, our study
commenced with an extensive evaluation with R-BERT, a simpler ar-
chitecture that only focused on entity and sentence representations
proposed by Wu and He [10]. Specifically, we applied R-BERT to
the REFinD dataset and examined its performance in with various
PLMs, including BERT [2], RoBERTa [7] and the domain-adapted
FinBERT model [11]. Additionally, we performed experiments in-
volving feature selection and feature fusion techniques (primarily
the average strategy on internal features before the final concatena-
tion operation). Furthermore, we thoroughly explored the annota-
tions available within the REFinD dataset and investigated different
fusion strategies. Results on the public test set are presented in
Table 4 (Denotation reference: EV= entity vectors, GI = entity pair
group, S = separate average, U = union average).

Table 3 shows that RoBERTa outperforms the domain-adapted
FinBERT [11], a PLM specifically pre-trained on financial texts. This
confirms previous findings that domain-adapted Transformers do
not always perform better than general-domain ones [8].

1Please refer to https://codalab.lisn.upsaclay.fr/competitions/11770#results for the
details of the ranking.
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Table 4: Performance with different features

Features Average strategy Best Macro-F1

EV S 0.58
EV + POS S 0.59

EV + SDP + POS U 0.61
EV + SDP + NER U 0.59

EV + SDP + POS + NER U 0.61
EV + GI S 0.61

EV + SDP + GI U 0.63

The observed improvement, however, is modest. This highlights
the inherent limitations of relying solely on sentence and entity rep-
resentations for RC challenges. The interplay of lexical, semantic,
and syntactic information across different relation groups requires
that we incorporate additional internal or external information to
tackle the classification problem. In Table 4, we can see that SDP
(an internal feature) and the entity pair group (an external feature)
emerge as key factors for the relation classification task. The pres-
ence of overlapping lexical, semantic, and syntactic information
among different relation groups underscores the significance of
an entity pair indicator at the decision boundary. The main idea
would be that a pipeline approach is likely to surpass the joint
extraction approach in a domain-specific RE task. By looking at
the SDP words and integrating them with the target entities during
vector extraction, we not only exploit the dependency relation, but
are able to model their spatial positing and relative distances.

5 CONCLUSION
This study presents a straightforward approach to the relation ex-
traction (RE) challenge on the REFinD dataset by employing PLMs,
especially the RoBERTa model. The method revolves around utiliz-
ing sentence-level and entity-level representations for classification,
while also incorporating features based on the dependency path
and entity pair information. Inspired by the insightful results from
ablation studies, we intend to delve deeper into the field of financial
relation extraction. In particular, we plan to extend our investigation
by leveraging the REFinD dataset for other NLP tasks, such as NER
and entity linking. Furthermore, we aim to enhance the approach
by incorporating additional dependency-related information.
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